Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(11): e2314793121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442158

RESUMO

The 1986 disaster at the Chornobyl Nuclear Power Plant transformed the surrounding region into the most radioactive landscape known on the planet. Whether or not this sudden environmental shift selected for species, or even individuals within a species, that are naturally more resistant to mutagen exposure remains an open question. In this study, we collected, cultured, and cryopreserved 298 wild nematode isolates from areas varying in radioactivity within the Chornobyl Exclusion Zone. We sequenced and assembled genomes de novo for 20 Oscheius tipulae strains, analyzed their genomes for evidence of recent mutation acquisition in the field, and observed no evidence of an association between mutation and radioactivity at the sites of collection. Multigenerational exposure of each of these strains to several chemical mutagens in the lab revealed that strains vary heritably in tolerance to each mutagen, but mutagen tolerance cannot be predicted based on the radiation levels at collection sites, and Chornobyl isolates were not systematically more resistant than strains from undisturbed habitats. In sum, the absence of mutational signatures does not reflect unique capacity for tolerating DNA damage.


Assuntos
Acidente Nuclear de Chernobyl , Exposição à Radiação , Mutagênicos , Exposição Ambiental , Fenótipo
2.
Ecol Evol ; 13(9): e10454, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37674649

RESUMO

Camera traps have become in situ sensors for collecting information on animal abundance and occupancy estimates. When deployed over a large landscape, camera traps have become ideal for measuring the health of ecosystems, particularly in unstable habitats where it can be dangerous or even impossible to observe using conventional methods. However, manual processing of imagery is extremely time and labor intensive. Because of the associated expense, many studies have started to employ machine-learning tools, such as convolutional neural networks (CNNs). One drawback for the majority of networks is that a large number of images (millions) are necessary to devise an effective identification or classification model. This study examines specific factors pertinent to camera trap placement in the field that may influence the accuracy metrics of a deep-learning model that has been trained with a small set of images. False negatives and false positives may occur due to a variety of environmental factors that make it difficult for even a human observer to classify, including local weather patterns and daylight. We transfer-trained a CNN to detect 16 different object classes (14 animal species, humans, and fires) across 9576 images taken from camera traps placed in the Chernobyl Exclusion Zone. After analyzing wind speed, cloud cover, temperature, image contrast, and precipitation, there was not a significant correlation between CNN success and ambient conditions. However, a possible positive relationship between temperature and CNN success was noted. Furthermore, we found that the model was more successful when images were taken during the day as well as when precipitation was not present. This study suggests that while qualitative site-specific factors may confuse quantitative classification algorithms such as CNNs, training with a dynamic training set can account for ambient conditions so that they do not have a significant impact on CNN success.

3.
bioRxiv ; 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37398032

RESUMO

The 1986 disaster at the Chornobyl Nuclear Power Plant transformed the surrounding region into the most radioactive landscape known on the planet. Questions remain regarding whether this sudden environmental shift selected for species, or even individuals within a species, that are naturally more resistant to radiation exposure. We collected, cultured, and cryopreserved 298 wild nematodes isolates from areas varying in radioactivity within the Chornobyl Exclusion Zone. We sequenced and assembled genomes de novo for 20 Oschieus tipulae strains, analyzed their genomes for evidence of recent mutation acquisition in the field and saw no evidence of an association between mutation and radiation level at the sites of collection. Multigenerational exposure of each of these strains to several mutagens in the lab revealed that strains vary heritably in tolerance to each mutagen, but mutagen tolerance cannot be predicted based on the radiation levels at collection sites.

4.
Canine Med Genet ; 10(1): 1, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890600

RESUMO

BACKGROUND: Natural and anthropogenic disasters can have long-lasting impacts on the genetics and structure of impacted populations. The 1986 Chernobyl Nuclear Power Plant disaster led to extensive contamination of the local environment and the wildlife therein. Several ecological, environmental, and genetic studies reported various effects of this disaster on animal, insect, and plant species; however, little work has been done to investigate the genetics of the free-breeding dogs that occupy the Chernobyl Exclusion Zone (CEZ). RESULTS: We define the population genetic structure of two groups of dogs that reside within the CEZ, one around the reactor site itself and another living within Chernobyl City. We found little evidence of gene flow and a significant degree of genetic differentiation between the two populations dogs, suggesting that these are two distinct populations despite occupying areas located just 16 km apart. With an FST-based outlier analysis, we then performed a genome-wide scan for evidence of directional selection within the dog populations. We found 391 outlier loci associated with genomic regions influenced by directional selection, from which we identified 52 candidate genes. CONCLUSIONS: Our genome scan highlighted outlier loci within or near genomic regions under directional selection, possibly in response to the multi-generational exposure faced. In defining the population structure and identifying candidate genes for these dog populations, we take steps towards understanding how these types of prolonged exposures have impacted these populations.


Wildlife populations can be greatly affected by disasters, whether they are natural or man-made. Disasters that result in contamination or habitat destruction can result in population declines or influence wildlife adaptation to these adverse environmental changes. The Chernobyl nuclear power plant disaster released an enormous quantity of ionizing radiation into the surrounding environment. Abandonment of military and industrial facilities, as well as subsequent cleanup and remediation efforts, resulted in further environmental contamination by a variety of non-radioactive toxic metals, chemicals, and compounds. Earlier studies investigated local wildlife responses to some of these exposures. In this study, we address the impact of this disaster on the population structure of free-breeding dogs that live around the power plant and in the nearby city of Chernobyl. In particular, we use genetic approaches to understand how these two populations of dogs interact and their breed composition, so that we may begin to understand how these populations have adapted to over 30 years of exposure to this harsh environment. In this foundational study we determined that while the two local populations of dogs are separated by only 16 km, they have very low rates of interpopulation migration. We also detected genetic evidence that suggests that these population may have adapted to exposures faced over many generations. In future studies, we aim to determine if the genetic variation detected is indeed a biological response to enable survival after multi-generational exposures to radiation, heavy metals, organic toxins, or other environmental contaminants. In this way, we then understand how the impact of environmental catastrophes such as the Chernobyl nuclear disaster can influence animal populations.

5.
Sci Adv ; 9(9): eade2537, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36867701

RESUMO

The 1986 Chernobyl nuclear disaster initiated a series of catastrophic events resulting in long-term and widespread environmental contamination. We characterize the genetic structure of 302 dogs representing three free-roaming dog populations living within the power plant itself, as well as those 15 to 45 kilometers from the disaster site. Genome-wide profiles from Chernobyl, purebred and free-breeding dogs, worldwide reveal that the individuals from the power plant and Chernobyl City are genetically distinct, with the former displaying increased intrapopulation genetic similarity and differentiation. Analysis of shared ancestral genome segments highlights differences in the extent and timing of western breed introgression. Kinship analysis reveals 15 families, with the largest spanning all collection sites within the radioactive exclusion zone, reflecting migration of dogs between the power plant and Chernobyl City. This study presents the first characterization of a domestic species in Chernobyl, establishing their importance for genetic studies into the effects of exposure to long-term, low-dose ionizing radiation.


Assuntos
Acidente Nuclear de Chernobyl , Desastres , Cães , Animais , Meio Ambiente , Poluição Ambiental , Demografia
6.
Cell Rep ; 42(1): 111992, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36662619

RESUMO

Insights into the evolution of non-model organisms are limited by the lack of reference genomes of high accuracy, completeness, and contiguity. Here, we present a chromosome-level, karyotype-validated reference genome and pangenome for the barn swallow (Hirundo rustica). We complement these resources with a reference-free multialignment of the reference genome with other bird genomes and with the most comprehensive catalog of genetic markers for the barn swallow. We identify potentially conserved and accelerated genes using the multialignment and estimate genome-wide linkage disequilibrium using the catalog. We use the pangenome to infer core and accessory genes and to detect variants using it as a reference. Overall, these resources will foster population genomics studies in the barn swallow, enable detection of candidate genes in comparative genomics studies, and help reduce bias toward a single reference genome.


Assuntos
Andorinhas , Animais , Andorinhas/genética , Metagenômica , Genoma/genética , Genômica , Cromossomos
7.
Artigo em Inglês | MEDLINE | ID: mdl-36718597

RESUMO

Nuclear weapons testing in the atmosphere during the 1950s and 1960s deposited fallout throughout the world, exposing all humans to food and water before the Limited Test Ban Treaty ended large-scale tests. The largest effort to measure in vivo fallout in humans, performed by Washington University (USA), collected over 300,000 deciduous teeth to document a sustained increase in Strontium-90 (Sr-90) during testing and a sharp decline after the test ban. Sr-90 patterns and trends in teeth were consistent with those of bones and milk. Sr-90 is still detectable in about 100,000 of the teeth, which were never tested. Tooth donors were born during atmospheric testing (1946-1965) and thus exposed to fallout in utero and during infancy/childhood, when exposures pose the greatest health risk. Preliminary analysis of global fallout's health risk in the United States indicates recent cancer mortality in several high-fallout areas exceeded that of states with the lowest fallout, peaking for the cohort born in the early 1960s, when fallout was highest. These findings support subsequent measurement of Sr-90 in deciduous teeth of persons who died of diseases such as cancer, along with controls, a novel approach to assessing fallout hazards.


Assuntos
Neoplasias , Armas Nucleares , Cinza Radioativa , Lactente , Estados Unidos/epidemiologia , Humanos , Criança , Cinza Radioativa/efeitos adversos , Dente Decíduo , Washington
8.
J Anim Ecol ; 91(7): 1535-1545, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35694772

RESUMO

Evidence that exposure to environmental pollutants can alter the gut microbiota composition of wildlife includes studies of rodents exposed to radionuclides. Antwis et al. (2021) used amplicon sequencing to characterise the gut microbiota of four species of rodent (Myodes glareolus, Apodemus agrarius, A. flavicollis and A. sylvaticus) inhabiting the Chernobyl Exclusion Zone (CEZ) to examine possible changes in gut bacteria (microbiota) and gut fungi (mycobiota) associated with exposure to radionuclides and whether the sample type (from caecum or faeces) affected the analysis. The conclusions derived from the analyses of gut mycobiota are based on data that represent a mixture of ingested fungi (e.g. edible macrofungi, polypores, lichens and ectomycorrhizae) and gut mycobiota (e.g. microfungi and yeasts), which mask the patterns of inter- and intraspecific variation in the authentic gut mycobiota. Implying that 'faecal samples are not an accurate indicator of gut composition' creates an unnecessary controversy about faecal sampling because the comparison of samples from the caecum and faeces confounds many other possible drivers (including different animals from different locations, sampled in different years) of variation in gut microbiota. It is relevant also that Antwis et al.'s (2021) data lack statistical power to detect an effect of exposure to radionuclides on the gut microbiota because (1) all of their samples of Apodemus mice had experienced a medium or high total absorbed dose rate and (2) they did not collect samples of bank voles (M. glareolus) from replicate contaminated and uncontaminated locations. Discussion of Antwis et al.'s (2021) analysis, especially the claims presented in the Abstract, is important to prevent controversy about the outcome of research on the biological impacts of wildlife inhabiting the CEZ.


Assuntos
Acidente Nuclear de Chernobyl , Microbioma Gastrointestinal , Micobioma , Exposição à Radiação , Animais , Animais Selvagens , Arvicolinae , Bactérias , Fungos , Mamíferos , Camundongos , Murinae , Radioisótopos
9.
Mol Biol Evol ; 39(6)2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35617136

RESUMO

The barn swallow (Hirundo rustica) poses a number of fascinating scientific questions, including the taxonomic status of postulated subspecies. Here, we obtained and assessed the sequence variation of 411 complete mitogenomes, mainly from the European H. r. rustica, but other subspecies as well. In almost every case, we observed subspecies-specific haplogroups, which we employed together with estimated radiation times to postulate a model for the geographical and temporal worldwide spread of the species. The female barn swallow carrying the Hirundo rustica ancestral mitogenome left Africa (or its vicinity) around 280 thousand years ago (kya), and her descendants expanded first into Eurasia and then, at least 51 kya, into the Americas, from where a relatively recent (<20 kya) back migration to Asia took place. The exception to the haplogroup subspecies specificity is represented by the sedentary Levantine H. r. transitiva that extensively shares haplogroup A with the migratory European H. r. rustica and, to a lesser extent, haplogroup B with the Egyptian H. r. savignii. Our data indicate that rustica and transitiva most likely derive from a sedentary Levantine population source that split at the end of the Younger Dryas (YD) (11.7 kya). Since then, however, transitiva received genetic inputs from and admixed with both the closely related rustica and the adjacent savignii. Demographic analyses confirm this species' strong link with climate fluctuations and human activities making it an excellent indicator for monitoring and assessing the impact of current global changes on wildlife.


Assuntos
Genoma Mitocondrial , Andorinhas , África , Animais , Ásia , Feminino , Humanos , Filogeografia , Andorinhas/genética
10.
Ecol Evol ; 11(17): 12051-12063, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34522360

RESUMO

Camera traps have become an extensively utilized tool in ecological research, but the manual processing of images created by a network of camera traps rapidly becomes an overwhelming task, even for small camera trap studies.We used transfer learning to create convolutional neural network (CNN) models for identification and classification. By utilizing a small dataset with an average of 275 labeled images per species class, the model was able to distinguish between species and remove false triggers.We trained the model to detect 17 object classes with individual species identification, reaching an accuracy up to 92% and an average F1 score of 85%. Previous studies have suggested the need for thousands of images of each object class to reach results comparable to those achieved by human observers; however, we show that such accuracy can be achieved with fewer images.With transfer learning and an ongoing camera trap study, a deep learning model can be successfully created by a small camera trap study. A generalizable model produced from an unbalanced class set can be utilized to extract trap events that can later be confirmed by human processors.

11.
Ecol Evol ; 11(13): 9039-9048, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34257943

RESUMO

Anthropogenic stressors, such as radioactive contaminants released from the Chernobyl and Fukushima Daiichi accidents, deteriorate ecological and evolutionary processes, as evidence for damaging effects of radioactive contamination on wildlife is accumulating. Yet little is known about physiological traits of animals inhabiting contaminated areas, and how those are affected by individual quality and phenology. We investigated variation in body temperature of wild barn swallows, Hirundo rustica, exposed to radioactive contamination from the Chernobyl accident in Ukraine and Belarus. We tested whether exposure to variable levels of radioactive contamination modified core body temperature of birds, and whether individual and phenological characteristics modulated radiosensitivity of body temperature. We showed that barn swallow body temperature varied with exposure to environmental radioactive contamination and that individual characteristics and phenology affected radioactive exposure. Increased radiosensitivity and up-regulation of body temperature were detected in birds of low body condition, high risk of capture, and in animals captured late during the day but early during the season. These results highlight the complex ways that the body temperature of a wild bird is impacted by exposure to increased radioactive contamination in natural habitats. By impacting body temperature, increased radioactive contamination may compromise energetic balance, jeopardize responsiveness to global warming, and increase risk of overheating.

12.
Biol Rev Camb Philos Soc ; 96(5): 1799-1815, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33987930

RESUMO

Dogs were frequently employed as laboratory subjects during the era of atomic bomb testing (1950-1980), particularly in studies used to generate predictive data regarding the expected effects of accidental human occupational exposure to radiation. The bulk of these studies were only partly reported in the primary literature, despite providing vital information regarding the effects of radiation exposure on a model mammalian species. Herein we review this literature and summarize the biological effects in relation to the isotopes used and the method of radionuclide exposure. Overall, these studies demonstrate the wide range of developmental and physiological effects of exposure to radiation and radionuclides in a mid-sized mammal.


Assuntos
Armas Nucleares , Animais , Cães , Humanos , Radiação Ionizante , Projetos de Pesquisa , Sobreviventes
13.
Mol Ecol ; 30(14): 3485-3499, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33955637

RESUMO

Species identity is thought to dominate over environment in shaping wild rodent gut microbiota, but it remains unknown whether the responses of host gut microbiota to shared anthropogenic habitat impacts are species-specific or if the general gut microbiota response is similar across host species. Here, we compare the influence of exposure to radionuclide contamination on the gut microbiota of four wild mouse species: Apodemus flavicollis, A. sylvaticus, A. speciosus and A. argenteus. Building on the evidence that radiation impacts bank vole (Myodes glareolus) gut microbiota, we hypothesized that radiation exposure has a general impact on rodent gut microbiota. Because we sampled (n = 288) two species pairs of Apodemus mice that occur in sympatry in habitats affected by the Chernobyl and Fukushima nuclear accidents, these comparisons provide an opportunity for a general assessment of the effects of exposure to environmental contamination (radionuclides) on gut microbiota across host phylogeny and geographical areas. In general agreement with our hypothesis, analyses of bacterial 16S rRNA gene sequences revealed that radiation exposure alters the gut microbiota composition and structure in three of the four species of Apodemus mice. The notable lack of an association between the gut microbiota and soil radionuclide contamination in one mouse species from Fukushima (A. argenteus) probably reflects host "radiation escape" through its unique tree-dwelling lifestyle. The finding that host ecology can modulate effects of radiation exposure offers an interesting counterpoint for future analyses into effects of radiation or any other toxic exposure on host and its associated microbiota. Our data show that exposure to radionuclide contamination is linked to comparable gut microbiota responses across multiple species of rodents.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Arvicolinae , Camundongos , Murinae , RNA Ribossômico 16S/genética
14.
J Anim Ecol ; 89(11): 2617-2630, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32939769

RESUMO

Gut microbiota play an important role in host health. Yet, the drivers and patterns of microbiota imbalance (dysbiosis) in wild animals remain largely unexplored. One hypothesised outcome of stress on animal microbiomes is a destabilised microbial community that is characterised by an increase in inter-individual differences compared with microbiomes of healthy animals, which are expected to be (a) temporally stable and (b) relatively similar among individuals. This set of predictions for response of microbiomes to stressors is known as the Anna Karenina principle (AKP) for animal microbiomes. We examine the AKP in a wild mammal inhabiting disturbed environments by conducting a capture-mark-recapture survey of bank voles Myodes glareolus in areas that contrast in levels of radionuclide contamination (Chernobyl, Ukraine). Counter to key predictions of the AKP, bank voles that are not exposed to radionuclides harbour variable (increased inter-individual differences) and temporally dynamic gut microbiota communities, presumably tracking the natural spatio-temporal variation in resources. Conversely, bank voles exposed to radionuclides host more similar gut microbiota communities that are temporally stable, potentially due to a dysbiosis or selection (on host or bacteria) imposed by chronic radiation exposure. The implication of these data is that environmental stress (radiation exposure) can constrain the natural spatial and temporal variation of wild animal gut microbiota.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Animais Selvagens , Arvicolinae , Bactérias
15.
Sci Data ; 7(1): 312, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968071

RESUMO

Vertebrate gut microbiota provide many essential services to their host. To better understand the diversity of such services provided by gut microbiota in wild rodents, we assembled metagenome shotgun sequence data from a small mammal, the bank vole Myodes glareolus (Rodentia, Cricetidae). We were able to identify 254 metagenome assembled genomes (MAGs) that were at least 50% (n = 133 MAGs), 80% (n = 77 MAGs) or 95% (n = 44 MAGs) complete. As typical for a rodent gut microbiota, these MAGs are dominated by taxa assigned to the phyla Bacteroidetes (n = 132 MAGs) and Firmicutes (n = 80), with some Spirochaetes (n = 15) and Proteobacteria (n = 11). Based on coverage over contigs, Bacteroidetes were estimated to be most abundant group, followed by Firmicutes, Spirochaetes and Proteobacteria. These draft bacterial genomes can be used freely to determine the likely functions of gut microbiota community composition in wild rodents.


Assuntos
Arvicolinae/microbiologia , Bactérias/classificação , Microbioma Gastrointestinal , Animais , Genoma Bacteriano
16.
Heliyon ; 6(8): e04616, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32885067

RESUMO

BACKGROUND: Ionizing radiation and chemical pollution can disrupt normal embryonic development and lead to congenital malformations and fetal death. We used official government statistical data for 2000-2017 to test the hypothesis that radioactive and chemical pollutants influenced the frequency of de novo congenital malformations in newborns of the Bryansk region of southwest Russia. METHODS: A variety of statistical approaches were used to assess congenital malformation frequencies including the Shapiro-Wilk test, White's homoscedasticity test, Wilcoxon T-test, Spearman's rank correlation test, and the inversely proportional regression. RESULTS: We found that the frequency of polydactyly, multiple congenital malformations, and the frequency of de novo congenital malformations in newborns were significantly higher (p = 0.001-0.054) in regions with elevated radioactive, chemical and combined contamination. Polydactyly, multiple congenital malformations, and the sum of all congenital malformations were 4.7-7.4 times, 2.5-6.8 times, and 3.5-4.6 times higher in contaminated regions in comparison with the control group. The combination of both radioactive and chemical pollutants led to significantly higher frequencies of multiple congenital malformations when compared to regions with only one pollutant (radiation alone: 2.2 times, p = 0.034; chemical pollutants alone: 1.9 times, p = 0.008) implying that the effects of these stressors were at minimum additive. Although there was a trend for decreasing frequencies of multiple congenital malformations during the 2000-2017 period in areas of combined pollution, the opposite was true for regions with radioactive or chemical pollutants alone. However, overall, our models suggest that the frequency of multiple congenital malformations in areas of combined pollution will significantly (p = 0.027) exceed the frequencies observed for regions containing radioactive or chemical pollutants alone by 39.6% and 45.7% respectively, by 2018-2023. CONCLUSION: These findings suggest additive and potentially synergistic effects of radioactive and chemical pollutants on the frequencies of multiple congenital malformations in the Bryansk region of southwestern Russia.

17.
Sci Rep ; 10(1): 14083, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32826946

RESUMO

We re-analyzed field data concerning potential effects of ionizing radiation on the abundance of mammals collected in the Chernobyl Exclusion Zone (CEZ) to interpret these findings from current knowledge of radiological dose-response relationships, here mammal response in terms of abundance. In line with recent work at Fukushima, and exploiting a census conducted in February 2009 in the CEZ, we reconstructed the radiological dose for 12 species of mammals observed at 161 sites. We used this new information rather than the measured ambient dose rate (from 0.0146 to 225 µGy h-1) to statistically analyze the variation in abundance for all observed species as established from tracks in the snow in previous field studies. All available knowledge related to relevant confounding factors was considered in this re-analysis. This more realistic approach led us to establish a correlation between changes in mammal abundance with both the time elapsed since the last snowfall and the dose rate to which they were exposed. This relationship was also observed when distinguishing prey from predators. The dose rates resulting from our re-analysis are in agreement with exposure levels reported in the literature as likely to induce physiological disorders in mammals that could explain the decrease in their abundance in the CEZ. Our results contribute to informing the Weight of Evidence approach to demonstrate effects on wildlife resulting from its field exposure to ionizing radiation.


Assuntos
Distribuição Animal/efeitos da radiação , Animais Selvagens , Acidente Nuclear de Chernobyl , Mamíferos , Exposição à Radiação , Absorção de Radiação , Animais , Fatores de Confusão Epidemiológicos , Relação Dose-Resposta à Radiação , Comportamento Predatório , Poluentes Radioativos do Solo/análise , Poluentes Radioativos do Solo/toxicidade , Ucrânia
18.
Ecol Evol ; 10(13): 6409-6420, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32724522

RESUMO

The long-term contamination that followed the nuclear disaster at Chernobyl provides a case study for the effects of chronic ionizing radiation on living organisms and on their ability to tolerate or evolve resistance to such radiation. Previously, we studied the fertility and viability of early developmental stages of a castrating plant pathogen, the anther-smut fungus Microbotryum lychnidis-dioicae, isolated from field sites varying over 700-fold in degree of radioactive contamination. Neither the budding rate of haploid spores following meiosis nor the karyotype structure varied with increasing radiation levels at sampling sites. Here, we assessed the ability of the same M. lychnidis-dioicae strains to perform their whole life cycle, up to the production of symptoms in the plants, that is, the development of anthers full of fungal spores; we also assessed their viability under experimental radiation. Fungal strains from more contaminated sites had no lower spore numbers in anthers or viability, but infected host plants less well, indicating lower overall fitness due to radioactivity exposure. These findings improve our understanding of the previous field data, in which the anther-smut disease prevalence on Silene latifolia plants caused by M. lychnidis-dioicae was lower at more contaminated sites. Although the fungus showed relatively high resistance to experimental radiation, we found no evidence that increased resistance to radiation has evolved in populations from contaminated sites. Fungal strains from more contaminated sites even tolerated or repaired damage from a brief acute exposure to γ radiation less well than those from non- or less contaminated sites. Our results more generally concur with previous studies in showing that the fitness of living organisms is affected by radiation after nuclear disasters, but that they do not rapidly evolve higher tolerance.

19.
Front Plant Sci ; 11: 552, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32457784

RESUMO

Perhaps the main factor determining success of space travel will be the ability to control effects of ionizing radiation for humans, but also for other living organisms. Manned space travel will require the cultivation of food plants under conditions of prolonged exposure to ionizing radiation. Although there is a significant literature concerning the effects of acute high dose rate exposures on plant genetics, growth, and development, much less is known concerning the effects of chronic low dose irradiation especially those related to the impacts of the high energy protons and heavy ions that are encountered in the space environment. Here, we make the argument that in situ studies of the effects of radionuclides at nuclear accident sites (e.g., Chernobyl and Fukushima), atomic bomb test sites, and areas of naturally high radiation levels, could provide insights concerning the mechanisms of radiation effects on living systems that cannot be assessed short of conducting research in space, which is not yet feasible for large scale, long term, multigenerational experiments. In this article we review the literature concerning the effects of chronic low-dose rate radiation exposure from studies conducted in Chernobyl, Fukushima, and other regions of the world with high ambient radiation levels (parts of India in particular). In general, mutation rates and other measures of genetic damage are considerably elevated, pollen and seed viability are reduced, growth rates are slower, and the frequency of developmental abnormalities is increased, although there is considerable variation among taxa for these effects. In addition, there are interactions between radiation and other environmental stressors (e.g., temperature, drought, heavy metals) that may play important roles in determining susceptibility to radiation induced stress.

20.
Sci Rep ; 9(1): 850, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696885

RESUMO

Telomeres, the protective structures at the ends of chromosomes, can be shortened when individuals are exposed to stress. In some species, the enzyme telomerase is expressed in adult somatic tissues, and potentially protects or lengthens telomeres. Telomeres can be damaged by ionizing radiation and oxidative stress, although the effect of chronic exposure to elevated levels of radiation on telomere maintenance is unknown for natural populations. We quantified telomerase expression and telomere length (TL) in different tissues of the bank vole Myodes glareolus, collected from the Chernobyl Exclusion Zone, an environment heterogeneously contaminated with radionuclides, and from uncontaminated control sites elsewhere in Ukraine. Inhabiting the Chernobyl Exclusion Zone was associated with reduced TL in the liver and testis, and upregulation of telomerase in brain and liver. Thus upregulation of telomerase does not appear to associate with longer telomeres but may reflect protective functions other than telomere maintenance or an attempt to maintain shorter telomeres in a stressful environment. Tissue specific differences in the rate of telomere attrition and apparent radiosensitivity weaken the intra-individual correlation in telomere length among tissues in voles exposed to radionuclides. Our data show that ionizing radiation alters telomere homeostasis in wild animal populations in tissue specific ways.


Assuntos
Arvicolinae/fisiologia , Exposição Ambiental/efeitos adversos , Fígado/fisiologia , Radioisótopos/efeitos adversos , Telomerase/metabolismo , Telômero/genética , Testículo/fisiologia , Animais , Acidente Nuclear de Chernobyl , Regulação da Expressão Gênica , Masculino , Especificidade de Órgãos , Radiação Ionizante , Telomerase/genética , Homeostase do Telômero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...